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In Pavlovian and instrumental conditioning, reward typically comes
seconds after reward-triggering actions, creating an explanatory
conundrum known as ‘‘distal reward problem’’: How does the brain
know what firing patterns of what neurons are responsible for the
reward if 1) the patterns are no longer there when the reward
arrives and 2) all neurons and synapses are active during the
waiting period to the reward? Here, we show how the conundrum
is resolved by a model network of cortical spiking neurons with
spike-timing--dependent plasticity (STDP) modulated by dopamine
(DA). Although STDP is triggered by nearly coincident firing
patterns on a millisecond timescale, slow kinetics of subsequent
synaptic plasticity is sensitive to changes in the extracellular DA
concentration during the critical period of a few seconds. Random
firings during the waiting period to the reward do not affect STDP
and hence make the network insensitive to the ongoing activity—
the key feature that distinguishes our approach from previous
theoretical studies, which implicitly assume that the network be
quiet during the waiting period or that the patterns be preserved
until the reward arrives. This study emphasizes the importance of
precise firing patterns in brain dynamics and suggests how a global
diffusive reinforcement signal in the form of extracellular DA can
selectively influence the right synapses at the right time.

Keywords: classical conditioning, dopamine, instrumental conditioning,
reward, simulation, spike-timing--dependent plasticity (STDP)

Introduction

Learning the associations between cues and reward (classical or

Pavlovian conditioning) or between cues, actions, and reward

(instrumental or operant conditioning) involves reinforcement

of neuronal activity by reward or punishments (Pavlov 1927;

Hull 1943; Houk, Davis, Beiser 1995; Schultz 1998; Dayan and

Abbott 2001). Typically, the reward comes seconds after

reward-predicting cues or reward-triggering actions, creating

an explanatory conundrum known in the behavioral literature

as the ‘‘distal reward problem’’ (Hull 1943) and in the rein-

forcement learning literature as the ‘‘credit assignment prob-

lem’’ (Minsky 1963; Barto et al. 1983; Houk, Adams, Barto 1995;

Sutton and Barto 1998; Dayan and Abbott 2001; Worgotter and

Porr 2005). Indeed, how does the animal know which of the

many cues and actions preceding the reward should be credited

for the reward? In neural terms, in which sensory cues and

motor actions correspond to neuronal firings, how does the

brain know what firing patterns, out of an unlimited repertoire

of all possible patterns, are responsible for the reward if the

patterns are no longer there when the reward arrives? How

does it know which spikes of which neurons result in the

reward if many neurons fire during the waiting period to the

reward? Finally, how does the common reinforcement signal in

the form of the neuromodulator dopamine (DA) (Schultz 1998,

2002; Seamans and Yang 2004; Schultz 2007a, 2007b) influences

the right synapses at the right time, if DA is released globally to

many synapses? In this paper, we show how the credit assign-

ment problem can be solved in a simulated network of cortical

spiking neurons with DA-modulated plasticity.

An important aspect of DA modulation of synaptic plasticity is

its enhancement of long-term potentiation (LTP) and long-term

depression (LTD): In hippocampus, DA D1-receptor agonists

enhance tetanus-induced LTP, but the effect disappears if

the agonist arrives at the synapses 15--25 s after the tetanus

(Otmakhova and Lisman 1996, p. 7481; see also Impey et al.

1996; Barad et al. 1998), thereby suggesting the existence of

a short window of opportunity for the enhancement. LTP in the

hippocampal / prefrontal cortex pathway is enhanced by

direct application of DA in vivo (Jay et al. 1996) or by burst

stimulation of the ventral tegmental area (VTA), which releases

DA (Gurden et al. 2000). Correspondingly, D1-receptor antag-

onists prevent the maintenance of LTP (Frey et al. 1990; Impey

et al. 1996), whereas agonists promote it via blocking depot-

entiation (Otmakhova and Lisman 1998) even when they are

applied after the plasticity-triggering stimuli. DA is also shown

to enhance tetanus-induced LTD in layer 5 pyramidal neurons of

prefrontal cortex (Otani et al. 2003), and it gates corticostriatal

LTP and LTD in striatal projection neurons (Choi and Lovinger

1997; Centonze et al. 1999; Calabresi et al. 2000).

Spike-timing--dependent synaptic plasticity (STDP) involves

both LTP and LTD of synapses: Firing of a presynaptic neuron

immediately before a postsynaptic neuron results in LTP of

synaptic transmission, and the reverse order of firing results in

LTD, as shown in Figure 1a,b (Levy and Steward 1983; Markram

et al. 1997; Bi and Poo 1998; see also theoretical paper by

Gerstner et al. 1996). It is reasonable to assume that the LTP and

LTD components of STDP are modulated by DA the same way as

they are in the classical LTP and LTD protocols (Houk, Adams,

Barto 1995; Seamans and Yang 2004). That is, a particular order

of firing induces a synaptic change (positive or negative), which

is enhanced if extracellular DA is present during the critical

window of a few seconds.

In this article, we show that DA modulation of STDP has

a built-in property of instrumental conditioning: It can reinforce

firing patterns occurring on a millisecond timescale even when

they are followed by reward that is delayed by seconds. This

property relies on the existence of slow synaptic processes that

act as ‘‘synaptic eligibility traces’’ (Klopf 1982; Sutton and Barto

1998) or ‘‘synaptic tags’’ (Frey and Morris 1997). These pro-

cesses are triggered by nearly coincident spiking patterns, but

due to a short temporal window of STDP, they are not affected

by random firing during the waiting period to the reward. To
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illustrate this point, consider 2 neurons, each firing 1 spike per

second, which is comparable to the spontaneous firing rate of

neocortical pyramidal neurons (all layers: less than 1 Hz and

often less than 0.1 Hz, layer 5: 4.1 Hz; Swadlow 1990, 1994). A

nearly coincident firing will trigger STDP and change the

synaptic tag. However, the probability that subsequent random

spikes with the same firing frequency will fall within 50 ms of

each other to trigger more STDP and alter the synaptic tag is

quite small—on average once per 20 s (we elaborate this point

in Reinforcing a Synapse). This ‘‘insensitivity’’ of the synaptic

tags to the random ongoing activity during the waiting period is

the key feature that distinguish our approach from previous

studies (see e.g., Houk, Adams, Barto 1995; Seung 2003), which

requires that the network be quiet during the waiting period or

that the patterns are preserved as a sustained response (Drew

and Abbott 2006). In this paper, we show how DA-modulated

STDP can selectively reinforce precise spike-timing patterns

that consistently precede the reward and ignore the other

firings that do not cause the reward. At the end of the article, we

discuss why this mechanism works only when precise firing

patterns are embedded into the sea of noise and why it fails in

the mean firing rate models.

We also present a spiking network implementation of

the most important aspect of the temporal difference (TD)

reinforcement learning rule (Sutton 1988)—the shift of reward-

triggered release of DA from unconditional stimuli (US) to

reward-predicting conditional stimuli (CS) (Ljungberg et al.

1992; Montague et al. 1996; Schultz et al. 1997; Schultz 1998,

2002, 2006b; Pan et al. 2005). Our simulations demonstrate how

DA modulation of STDP could play an important role in the

reward circuitry and solve the distal reward problem.

Materials and Methods

Because details of the kinetics of the intracellular processes triggered by

STDP and DA are unknown, we suggest the simplest phenomenological

model that captures the essence of DA modulation of STDP. Following

Izhikevich et al. (2004), we describe the state of each synapse using 2

phenomenological variables (Fig. 1a): synaptic strength/weight, s, and

activation of an enzyme important for plasticity, c, for example,

autophosphorylation of CaMK-II (Lisman 1989), oxidation of PKC or

PKA, or some other relatively slow process acting as a synaptic tag

_c = – c=sc +STDPðsÞdðt – tpre=postÞ; ð1Þ

_s = cd : ð2Þ

Here and below, d describes the extracellular concentration of DA

and d(t) is the Dirac delta function that step-increases the variable c.

Firings of pre- and postsynaptic neurons, occurring at times tpre/post,

respectively, change c by the amount STDP(s) depicted in Figure 1b,
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Figure 1. Instrumental conditioning of a synapse. (a) The dynamics of each synapse is described by 2 phenomenological variables governed by equations (1) and (2): synapse
strength s and eligibility trace c, which are gated by the extracellular DA d. Firings of the pre- and postsynaptic neurons induce changes to the variable c according to the STDP rule
(shown in b). These changes result in modification of the synaptic strength, s, only when extracellular DA is present (d[ 0) during the critical window of a few seconds while the
eligibility trace c decays to zero. (c) The magnification of the region in (d) marked by *. To reinforce coincident firings of 2 coupled neurons, we deliver a reward (step-increase of
variable d) with a random delay (between 1 and 3 s) each time a postsynaptic firing occurs within 10 ms after a presynaptic firing (marked by a rectangle in c). This rare event
increases c greater than any random firings of the same neurons during the delayed period. (d) Consistent rewarding of each such event results in the gradual increase of synaptic
strength, s, which increases the probability of coincident firings and brings even more reward. The time course of a typical unreinforced synapse (not shown here) looks like
a random walk near 0. The inset shows the distribution of all synaptic weights in the network. The reinforced synapse is potentiated to the maximal allowable value 4 mV (42 out of
50 experiments) whereas the other synapses are not.
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where s = tpost -- tpre is the interspike interval. This variable decays to c =
0 exponentially with the time constant sc = 1 s, as in Figure 1c. The decay

rate controls the sensitivity of plasticity to delayed reward. Indeed, c acts

as the ‘‘eligibility trace’’ for synaptic modification (Houk, Adams, Barto

1995) because it allows change of the synaptic strength s via equation

(2) gated by d. A better description of the decay of the synaptic tag cmay

be provided by detailed biophysical/kinetic models. Notice that the

decay of eligibility trace is relatively fast, so that the effect of DA is

negligible 5 s after the STDP-triggered event, which is consistent with

the experimental results of Otmakhova and Lisman (1996) who ob-

served no effect when DA was delivered 15--25 s after induction of

plasticity.

The model integrates, in a biophysically plausible way, the millisecond

timescale of spike interactions in synapse-specific STDP with the slow

tracemodulated by global reward signal corresponding to the behavioral

timescale. There is no direct experimental evidence for or against our

model; thus, the model makes a testable prediction, rather than a

postdiction, on the action of DA on STDP based on purely theoretical

considerations.

The variable d describes the concentration (lM) of extracellular DA,

and it is the same for all synapses in our model (whereas c and s are

different for different synapses). We assume that

_d = –d=sd +DAðt Þ ; ð3Þ

where sd is the time constant of DA uptake and DA(t) models the source

of DA due to the activity of dopaminergic neurons in the midbrain

structures VTA and substantia nigra pars compacta. A better description

of DA kinetics, based on Michaelis--Menten formalism, was recently

suggested by Montague et al. (2004).

In the simulations below, we take sd = 0.2 s, which is greater than the

experimentally measured time constant of DA uptake in striatum

(around 0.1 s, Wightman and Zimmerman 1990; Garris et al. 1994) but

smaller than that in the prefrontal cortex (seconds, see Cass and

Gerhardt 1995). We take tonic source of DA to be DA(t) = 0.01 lM/s so

that the baseline (tonic) concentration of DA is 2 nM as measured by

microdialysis in the striatum and prefrontal cortex (Seamans and Yang

2004, p. 31). We simulate the delivery of the reward in Figure 1c as

a burst of activity of dopaminergic neurons which step-increases the

concentration of DA by 0.5 lM (i.e., DA(t) = 0.5d(t -- trew) of lM/s at the

moment of reward trew), which is in the range measured in by Garris

et al. (1994). Because the tonic level of DA is much lower than the

phasic level during the reward, no significant modification of synaptic

strength occurs (d � 0) unless the reward is delivered (d is large). In

Figure 4, we use DA(t) = 0.004d(t) lM/s for each spike fired by the

neurons in group VTAp. A possible extension of equations (1) and (2) is

to consider a vector of synaptic tags corresponding to a cascade of

processes (Fusi et al. 2005). In this case, the STDP-triggered increase of

the synaptic eligibility trace would not be instantaneous, as in Figure 1c.

Instead, it would slowly increase and then decrease, like the synaptic

alpha function but on a longer timescale. The slow increase would

create a ‘‘refractory period’’ corresponding to the insensitivity to reward

that comes too early.

All simulations are carried out using a network of 1000 spiking

neurons described in detail by Izhikevich (2006), who provides the

MATLAB and C code. The code is also available on the author’s web page

www.izhikevich.com. The network has 80% excitatory neurons of the

regular spiking type and 20% inhibitory neurons of the fast spiking type

(Connors andGutnick 1990), representing the layer 2/3 part of a cortical

minicolumn. Neurons are randomly connected with 10% probability so

that there are 100 synapses per averaged neuron. The connections,

combined with the random input simulating noisy miniature PSPs, make

neurons fire Poisson-like spike trains with an average frequency around

1 Hz. This low frequency of firing is important for the ‘‘low probability’’

of sequential spikes to fall within the STDP time window by chance (the

firing rate in neocortical layer 2/3 is much less than 1 Hz, Swadlow 1990,

1994). The maximal axonal conduction delay is taken to be 1 ms. Each

excitatory synapse is modified according to equations (1) and (2) with

STDP depicted in Figure 1b, but the weights are limited to the range 0 to

4 mV (i.e., clipped at 0 and 4 mV). Both excitatory-to-excitatory and

excitatory-to-inhibitory synaptic connections are subject to the same

STDP rule. One could use a different, more physiological STDP rule for

the latter, or even keep them fixed (nonplastic). Our choice was done

for the sake of simplicity and to be consistent with previous imple-

mentations of the spiking model (Izhikevich 2006). Inhibitory synapses

are not plastic in the model. The LTD area in Figure 1b is 50% greater

than the LTP area so that uncorrelated firing of any 2 neurons results in

the decrease of synaptic strength between them (Kempter et al. 1999a,

1999b; Song et al. 2000). As a result of spontaneous activity, the

strengths of excitatory synapses in the network converge to the

exponential distribution depicted in the inset in Figure 1d. Notice

that all synapses are much weaker than the maximal allowable value of 4

mV, and the majority is less than 0.1 mV.

Results

Below we use the spiking network of 1000 cortical neurons

with DA-modulated STDP to illustrate various aspects of re-

inforcement of precise firing patterns embedded into the sea

of noise.

Reinforcing a Synapse

In Figure 1, we reinforce contingent firing of 2 neurons by

delayed reward to illustrate how DA-modulated STDP addresses

the credit assignment problem on the synaptic level. This ex-

periment is motivated by the in vivo monkey experiment of

Ahissar et al. (1992). The experiment might look artificial in

the context of animal learning, but it explains the mechanism

responsible for reinforcement of more complicated spiking

patterns, as we demonstrate later.

In the network of 1000 neurons and 100 000 synaptic in-

terconnections, we randomly choose a synapse that connects 2

excitatory neurons, as in Figure 1a, and manually set its synaptic

strength to zero (s = 0). The firing rate in the network is around

1 Hz, so every few minutes the postsynaptic neuron fires by

chance within 10 ms after the presynaptic neuron. Every time

such an event occurs, marked by the blue rectangle in Figure 1c,

we deliver the reward to the network in the form of a spike of

extracellular DA with a random delay between 1 and 3 s.

Because the delivery of the reward depends on what the net-

work is doing, the experiment in the figure could be interpreted

as the simplest form of instrumental conditioning (Dayan and

Abbott 2001).

In Figure 1d, we plot the strength of the synapse (curve) and

the moments the reward are delivered (bars). At the beginning,

the network receives unexpected reward every few minutes,

but it ‘‘does not know’’ what causes the reward or when.

Because of the delay to the reward, all neurons fire and all

synapses are activated during the waiting period to the reward

(in contrast to previous models), and all synapses receive the

same amount of reward (variable d). As in instrumental

conditioning, the system has to determine on its own what

patterns of spiking bring the reward and how to reinforce them.

Each delivery of the reward potentiates the chosen synapse

and brings it closer to the maximal allowable value of 4 mV. On

average, the probability (frequency) of reward triples, and the

chosen synapse quickly reaches the maximal allowable value of

4 mV. Other synapses change as well, but none reach 4 mV. The

distribution of all synaptic weights, depicted in the inset in

Figure 1d, remains relatively unchanged. To test the robustness

of this phenomenon, we ran 50 simulated experiments, each

with a randomly chosen synapse and schedule of reward delays.

In 42 out of 50 experiments, the chosen synapse reached the

maximal allowable value within 1-h period, requiring only 40 ± 8
reward.
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Why is the ‘‘chosen’’ synapse consistently potentiated, but the

other 79 999 excitatory synapses are not? (Only excitatory

synapses are plastic in the model). Nearly, coincident pre-then-

post firing of the 2 neurons in Figure 1c increases the value of

the variable c, which acts as the eligibility trace (synaptic tag)

for the modification of the synapse. The subsequent non-

coincident firings of the 2 neurons perturb c slightly because

the function STDP(s) in Figure 1b is small for large interspike

intervals s. As a result, c has a residual positive value when the

delayed reward arrives, so the synaptic strength s increases in

proportion to cd (see Materials and Methods). Of course,

a nearly coincident firing of the 2 neurons with the reverse

order (post-then-pre) during the waiting period could make c

negative, resulting in the decrease of swhen the reward arrives,

but the probability of such an adverse event during the waiting

period is quite small (because the firing rate is small). Naturally,

there are many other pairs of neurons that fire nearly coincident

spikes by chance just before the reward, so the corresponding

synapses are also modified. However, the order of firing of these

neurons is random, so after many firings, the positive and

negative modifications cancel each other out, resulting in a net

decrease of the synaptic weight (because the LTD area of the

STDP curve is larger than the LTP area). As a result, across many

trials, each reward consistently potentiates only the chosen

synapse and increases the cross-correlation between the pre-

and postsynaptic neurons, thereby bringing more reward.

Classical (Pavlovian) Conditioning

In Figure 2a, we illustrate a classical (Pavlovian) conditioning

experiment: Rewarding a CS (S1) embedded into a continuous

stream of a large number of irrelevant but equally salient stimuli.

To simulate the experiment, we choose 100 random sets, S1,

S2, . . ., S100, of 50 neurons each to represent 100 random stimuli.

To deliver a stimulus, say S1, we stimulate all 50 neurons in the

set S1 with a 1-ms pulse of superthreshold current. The nearly

coincident firing of neurons in S1 reveals itself as a vertical strip

in Figure 2b. The precise firing pattern is clearly seen only when

activities of all neurons are plotted, but it cannot be seen in the

activity of any individual neuron, because the spike evoked by

stimulus S1 is not different from any other spike of the neuron.

Next, we form a continuous input stream consisting of stimuli

Sk (1 < k < 100) in the random order with a random
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Figure 2. Classical (Pavlovian) conditioning. We select 100 groups, S1, S2, . . ., S100, of 50 randomly chosen neurons to represent 100 different input stimuli. To present a stimulus,
we fire the corresponding neurons (by injecting a superthreshold current). (a) The network receives a continuous stream of 5 stimuli per second (on average). Every time S1 appears
in the stream (on average once per 20 s), the network receives DA reward with a random delay up to 1 s. Response of the network to stimulation at the beginning of the experiment
(b) and after 1 h (c). Notice the enhanced response to S1. (d) The mean strength of excitatory synapses outgoing from the neurons in S1 increases greater than the mean excitatory
synaptic strength in the rest of the network, resulting in stronger network response to S1.
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interstimulus intervals between 100 ms and 300 ms, that is, on

average 5 stimuli per second. We treat S1 as our CS and the other

stimuli as distracters. For every occurrence of S1, we deliver

a reward in the form of the increase of extracellular DA with

a random delay of up to 1 s, as in Figure 2a. The delay is large

enough to allowmany neurons in the network to fire a spike and

to allow a few irrelevant stimuli during the waiting period, as in

Figure 2b. Thus, the network receives reward on average every

20 s caused by an unknown (to the network) firing pattern

embedded into the sea of random spikes and distracters.

At the beginning of the experiment, depicted in Figure 2b, all

stimuli have equal salience in the sense that they evoke

coincident firing of 50 stimulated neurons. However, after

a hundred of CS-reward parings, that is, within the first hour,

the response of the network to the CS S1 becomes reinforced, as

indicated by the thick vertical strip in Figure 2c. In Figure 2d, we

show that the averaged strength of excitatory synaptic connec-

tion from neurons in S1 becomes much stronger than the mean

excitatory synaptic connection in the rest of the network.

That is, neurons in S1 can strongly influence their postsynaptic

targets, or, in other words, the other neurons in the network

listen more closely to neurons in S1. The other neurons may

contain motor neurons that trigger a conditional response. In

this case, S1 would trigger the response more often and stronger

than any other stimulus Sk. The conditional response could be

a simplemovement in the anticipation of the reward or a learned

motor response, as in the instrumental (operant) conditioning

discussed in the next section. The other neurons may also

contain neurons projecting to the midbrain dopaminergic

neurons, as we discuss in Shift of DA Response from US to

Reward-Predicting CS in Classical Conditioning. In this case,

presentation of the CS S1 would trigger more DA release than

presentation of any other stimulus Sk, that is, S1 would acquire

a rewarding value.

How can the network select and reinforce a single firing

pattern in the presence of noise and irrelevant patterns,

especially in the view that the reward comes with a delay?

Presentation of every stimulus Sk fires 50 neurons, which sends

spikes to other neurons in the network, possibly firing a few of

them by chance. Because of the order pre-then-post, the

synaptic connections from the 50 neurons to the fired neurons

become eligible for potentiation, that is, the corresponding tags

cij increase. If no DA reward is delivered within a critical period

after this event, the synaptic tags cij decay to zero, resulting in

small overall potentiation (due to the tonic level of DA) which is

counterbalanced by depression (due to random spikes and the

fact that LTD window of STDP is greater than the LTP window).

However, if DA reward comes within the critical period after

the stimulation, the synapses are potentiated according to the

mechanism depicted in Figure 1c. The stronger the synapses,

the more excitation follows S1, the more postsynaptic targets

fire, leading to even greater potentiation of synapses from

neurons representing the CS S1.

Stimulus--Response Instrumental Conditioning

In Figure 3, we simulate a typical instrumental conditioning

experiment: we reinforce a network of 1000 cortical spiking

neurons to produce an appropriate motor response to a stimu-

lus. First, we choose a random group of 50 neurons, called S, that

represents the input stimulus to the network. We choose 2

random nonoverlapping groups of 50 excitatory neurons each,

called A and B, that give rise to 2 motor responses of the

network. To deliver the stimulus, we inject a strong 1-ms pulse

of current into the neurons in S to make them fire, as in Figure

3a (the 2- to 3-ms delay is due to the spike upstroke). Their

coincident firing typically evokes a few spikes in the other

neurons in the network. During a 20-ms time window after the

stimulation, we count the number of spikes fired by neurons in

A and B, denoted as |A| and |B|, respectively. We say that the

network exhibits response A when |A| > |B|, response B when

|B| > |A|, and no response otherwise (e.g., when |B| = |A| = 0,

a stronger requirement, e.g., |A| > 2|B| for response A, would still

be effective, but it takes longer time to reinforce). One might

think of neurons in groups A and B as projecting to 2 motor

areas that innervate 2 antagonistic muscles; to produce a notice-

able movement, one group has to fire more spikes than the

other group.

The simulated experiment consists of trials separated by 10 s.

In each trial, illustrated in Figure 3a, we deliver stimulation to

neurons in S and monitor the response of the network. If the

response is A (more spikes in group A than in group B), we

deliver a reward in the form of the increase of extracellular DA

with a delay of up to 1 s (the delay is inversely proportional to

the ratio |A|/|B|, so that greater ratios result in faster movements

and earlier reward). During the first few trials, the probability of

response A is the same as that of B, see Figure 3b, but then it

quickly increases to nearly 80% in less than 100 trials. As

a control, after the first 400 trials, we start to reward response B.

The probability of response A decreases while that of B in-

creases, and the network switches its behavior after less than 50

trials. We repeat this experiment 20 times, selecting random

sets S, A, and B. The network learns the correct response all 20

times. The only variability was the number of trials needed to

reach the 80% correct probability of responses. Increasing the

learning rate can decrease the number of required trials to just

a few—consistent with animal experiments (Pasupathy and

Miller 2005). However, the small size of the network would

make the network responses less reliable (noisier) in this case.

The number of spikes fired by neurons in A and B depends on

the strength of synaptic connections from S to A and B.

Rewarding response A reinforces connections to A, as one can

see in Figure 3c, according to the same mechanism as described

in Figure 1 for a pair of neurons. Interestingly, it also reinforces

connections from S to B (because there is no winner-take-all

competition between neurons in A and B), as well as con-

nections from S to any other neuron in the network (as in Fig.

2), though to a lesser degree. Indeed, if a neuron in B starts to

fire in response to the stimulation, but there are still more

spikes in A, the reward still comes and the connections from S to

that neuron in B are potentiated. This may continue as long as

|A| > |B|. A possible behavioral interpretation of this effect is that

the network generalizes that ‘‘reward are delivered in response

to stimulation S.’’ Conversely, rewarding B after 400 trials makes

connections S / B stronger than connections S / A. One

could further enhance the contrast between the synaptic

connections to A and B (and improve the percentage of correct

choices) via anatomical constraints, such as stronger winner-

take-all lateral inhibition. In this paper, we keep the anatomy

simple (all-to-all with 10% connectivity) to emphasize the role

of DA modulation of STDP over any other mechanism.

Notice that a simple combinatorial consideration shows that

there are more than 10164 different choices of 2 groups of 50

neurons out of 800 excitatory neurons. The network neither

knows the identity of neurons in A and B nor does it know the
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rules of the game or the schedule of the reward. It receives

a seemingly arbitrary sequence of rewards, and it determines on

its own what brings the reward and what it must do to increase

the frequency of the reward.

Shift of DA Response from US to Reward-Predicting CS in
Classical Conditioning

In Figure 4, we reproduce the basic phenomenology of shifting

the release of DA in response to US to an earlier reward-

predicting CS (Ljungberg et al. 1992; Schultz et al. 1997; Schultz

1998, 2002, 2006b; Pan et al. 2005). The shift occurs automat-

ically when VTA-projecting neurons are part of the whole

network and the synapses onto these neurons are subject to the

same DA-modulated STDP. Demonstrating the shift is the first

step toward a spiking network implementation of the TD error

signal (Sutton 1988; Houk, Adams, Barto 1995; Montague et al.

1996; Sutton and Barto 1998; Pan et al. 2005). The full spiking

implementation of TD would require modeling the looping

anatomy of striatum and basal ganglia, which is outside the

scope of this article.

First, we choose a random group of 100 excitatory neurons

and assume that this group, called VTAp, represents cortical

projections to the VTA of the midbrain (Au-Young et al. 1999).

We use different fonts: VTA for the area in midbrain and VTAp

for the group of neurons projecting to VTA (subscript ‘‘p’’ stands

for ‘‘projecting’’). Thus, we assume that the midbrain activity,

and hence the amount of DA released into the network, is

proportional to the firing rate of the neurons in this group. Next,

we choose a random group of excitatory neurons, called US,

that represents the US, and 2 groups, CS1 and CS2 that represent

2 CS; see Figure 4a.

To simulate the prior association between the US and the

release of DA, we reset the weights of synaptic connections

from the US group to the VTAp group (projecting to VTA) to the

maximal allowable values. (We could have achieved that by

repeating the classical conditioning experiment in Fig. 2 with S1
being the US). Thus, stimulating neurons in the US group would

result in a strong response in the VTA-projecting neurons VTAp,

and hence would release DA, whereas stimulating any other

random group of neurons would not result in significant

response of the VTAp. This is the only difference between the

US group and the other neurons in the network. (Apparently,

there are multiple pathways from US-triggered activity in the

brain to the VTA; here we consider only one, cortical pathway).

During the first 100 trials, where each trial is separated by

10--30 s, we deliver the US (but not CS), that is, we inject

a superthreshold current into the US group of neurons. Because
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Figure 3. Instrumental conditioning. (a) S, A, and B are 3 groups of 50 randomly chosen neurons (out of 1000) that correspond to the representation of an input stimulus and 2
(nonantagonistic) motor responses, respectively. Each trial consists of the presentation of a stimulus that fires neurons in group S (simulated by injecting a superthreshold current).
Spikes in groups A and B are counted during the 20-ms window after the stimulation. The network is said to produce response A if group A fires more spikes than group B, and vice
versa. Rewarding response A is simulated by the increase of the extracellular concentration of DA d (as in Fig. 1b) with a delay of up to 1 s. In (b) and (c), the first 400 trials delivered
every 10 s reinforce response A. The higher probability of response A to stimulation S results from the increase of the averaged strength of synaptic input from neurons S to neurons
A. The relationship reverses when response B is rewarded (trials 401--800). Notice that while the network does not know the identity of neurons in A and B, or what is rewarded, the
appropriate stimulus--response relationship is reinforced.
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of the strong initial projections from US to VTAp group, the

stimulation evokes a reliable response in the VTAp group

resulting in the elevation of extracellular DA and maintaining

(reinforcing) the projections (indeed, due to the spontaneous

release of DA, synapses are plastic all the time and may depress

because STDP is dominated by LTD). The histogram in Figure 4b

shows the response of the entire VTAp group on the last trial,

and the spike raster shows a typical response of a single neuron

in the group in 100 consecutive trials, which is similar to the in

vivo--recorded responses of midbrain neurons to unexpected

reward, novel, and salient stimuli (Schultz 1998, 2002, 2006b).

During trials 101--200, we stimulate neurons in the group CS1,

then we stimulate neurons in the group USwith a random delay

1 ± 0.25 s. As one can see, in Figure 4c, the VTAp neuron starts to

fire in response to the reward-predicting CS1 just after a few

trials, as was observed in vivo in monkeys and rats (see Schultz

2002; Pan et al. 2005, who showed that the switch occurs after

just a few pairings). The response of the neuron to the US slowly

decreases, so the response of the entire VTAp group to the last

trial (histogram in Fig. 4c) is diminished. During trials 201--300,

we present CS2 1 ± 0.25 s prior to CS1, which is 1 ± 0.25 s prior

to US. As one can see, in Figure 4d, the response of the neuron

switches to the earliest reward-predicting stimulus, CS2, though

there is still some response to CS1 and the US, again, consistent

with in vivo work (Pan et al. 2005).

The mechanism of switching of the response from the US to

the earlier CS relies on the sensitivity of STDP to the order of

firings occurring within tens of milliseconds (despite the fact
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that CS and US are separated by a second). Due to the ran-

dom connections in the network, stimulation of CS1 group of

neurons causes some neurons in the US group to fire, which in

turn causes some neurons in the VTAp group to fire; see Figure

4e, earlier trial. In essence, presentation of the CS triggers the

reactivation of the activity chain leading to the reward, CS1-

then-US-then-VTA, but on a compressed timescale. This prop-

erty emerged in the spiking network spontaneously. Due to the

same mechanism as in Figure 1, the order of firing CS1-then-

VTA, and the subsequent release of DA due to the presentation

of the US, potentiates the direct synaptic projections CS /
VTAp, resulting in the increased response to the CS1 seen in

Figure 4c, left. After many trials, neurons in group VTAp can fire

in response to firings of CS1 neurons alone, simultaneously or

often before they receive spikes from the US neurons, as in

Figure 4e, late trial. As a result of jittered and often inverse order

of firing, VTAp-then-US, and the fact that LTD part of STDP in

Figure 1b is dominant over the LTP part, the synaptic projec-

tions US / VTAp depress, resulting in the decreased (un-

learned) response to the US seen in Figure 4c, right. The same

mechanism is responsible for the switching of response from

CS1 to CS2 in Figure 4d. Again, this property appears spontane-

ously in a randomly connected network of spiking neurons

with STDP.

Discussion

We present a biologically realistic implementation of Pavlovian

and instrumental conditioning and some aspects of TD re-

inforcement learning using a spiking network with DA-modu-

lated STDP. Based on experimental evidence that DA modulates

classical LTP and LTD, we assume that DA has a permissive,

enabling effect allowing STDP to take place—a testable assump-

tion that has never been suggested before. Although STDP acts

on a millisecond timescale, the slow biochemical kinetics of

synaptic plasticity could make it sensitive to DA reward delayed

by seconds. We interpret the spiking network as representing

a small part of prefrontal cortex receiving numerous dopami-

nergic projections from the midbrain and projecting to the

midbrain (Seamans and Yang 2004), though the theory can be

applied to neostriatum and basal ganglia as well. Our simulations

suggest a neurally plausible mechanism of how associations

between cues, actions, and delayed reward are learned (Figs 1--

3), as well as how DA response shifts from US to reward-

predicting CS (Fig. 4).

Spiking Implementation of Reinforcement Learning

Spiking implementation of reinforcement learning has been

suggested by Seung (2003), Hasselmo (2005), and Koene and

Hasselmo (2005), and there are many more models based on

synaptic eligibility traces (see e.g., Houk, Davis, Beiser 1995). All

these models have one common drawback: they require the

network to be relatively quiet during the waiting period to the

reward. Indeed, random neuronal activity during the waiting

period triggers synaptic transmission in all synapses, alters the

eligibility traces, and impedes learning. In contrast, STDP is

insensitive to random firings during the waiting period but

sensitive only to precise firing patterns. Because the set of

precise patterns is sparse in the space of all possible firing

patterns, DA-modulated STDP takes advantage of this fact and

renders a superior mechanism of reinforcement learning.

Rao and Sejnowski (2001) consider explicitly the relationship

between STDP and TD, but they asked the opposite question:

how to get STDP from TD acting on a millisecond timescale and

how the resulting STDP depends on the dendritic location?

Synaptic Eligibility Traces

The slow kinetics of synaptic plasticity, modeled by the variable

c (see eq. 1), results in the existence of synaptic eligibility traces

(Houk, Adams, Barto 1995). This is an old idea in the classical

machine learning algorithms, where eligibility traces are as-

signed to cues and actions, as in the TD(k) learning rule (Houk,

Davis, Beiser 1995; Sutton and Barto 1998; Worgotter and Porr

2005). To make the machine learning algorithms work, the

network needs to know in advance the set of all possible cues

and actions. In contrast, there is combinatorially large number

of possible spike-timing patterns that could trigger STDP and

which could represent unspecified cues and actions of the

spiking network (Izhikevich 2006). Any one of them can be tied

to the reward by the environment or by the experimenter, and

the network can figure out which one on its own, using a more

biologically plausible way than TD(k) or other machine learning

algorithms do.

Spiking Implementation of TD

Our model shows a possible spiking network implementation of

some aspects of TD reinforcement learning: the shift of DA

response from US to reward-predicting CS. We stress that this

property was not built-in into the model, but it appeared

spontaneously when we allowed synapses onto VTA-projecting

neurons to be affected by DA the same way as any other

synapses in the network. Thus, the shift is a general property of

DA-modulated STDP applied to synaptic circuits projecting to

VTA. The mechanism of the shift is quite unexpected: It takes

advantage of the sensitivity of STDP to the fine temporal

structure of firing of US, CS, and VTA-projecting neurons during

the presentation of CS, as we explain in Figure 4e.

Notice that the DA response in Figure 4 is not a true error

prediction signal required by TD algorithms because the model

fails to exhibit depression of firing rate (dip) in the activity of

the VTAp group when US is omitted (Montague et al. 1996;

Schultz 1998). On the one hand, one would not expect the

depression because the intervals between CS and US are

random. However, the depression would not occur even if the

intervals were fixed because there is no internal clock or

anticipatory signal that tells the network when US is expected.

To get the depression of firing rate, one could simulate the US

anticipatory signal generated by the caudate nucleus and globus

pallidus (Watanabe 1996; Suri and Schultz 2001; Lauwereyns

et al. 2002) and stimulate inhibitory neurons at the moment the

US is expected to arrive (modeling caudate and globus pallidus

is outside the scope of this paper). Notice, also, that the DA

response in Figure 4 does not exhibit a gradual shift in latency,

as predicted by TD models, but jumps from US to reward-

predicting CS, which is more consistent with the effects

observed in in vivo experiments (Pan et al. 2005). Consistent

with these recordings, the DA response to US in Figure 4 does

not diminish completely but remains above a baseline level.

Finally, an unexpected presentation of the US after training

would result in a diminished DA response in the model because

the synaptic connections US / VTAp are depressed, that is, the

association is unlearned, in contrast to in vivo recordings

showing a strong response (Schultz 1998, 2002). Thus, DA-

modulated STDP is sufficient to reproduce some aspects of TD

reinforcement learning in biologically relevant terms of spiking
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activity and synaptic plasticity, but not all aspects. To address all

aspects, one needs to refine the network architecture and

introduce anatomical loops similar to those of basal ganglia.

Spiking versus Mean Firing Rate Models

Our study emphasizes the importance of precise firing patterns

in brain dynamics: The mechanism presented in this paper

works only when reward-predicting stimuli correspond to

precise firing patterns. We considered only synchronous pat-

terns embedded into the sea of noise, but the same mechanism

would work equally well for polychronous firing patterns, that

is, time-locked but not synchronous (Izhikevich 2006). In-

terestingly, rate-based leaning mechanisms would fail to re-

inforce the patterns. Indeed, presentation of a cue, such as S1 in

Figure 2, does not increase the firing rate of any neuron; it just

adds, removes, or changes the time of a single spike of each of

the 50 neurons in S1. In particular, the neurons continue to fire

Poissonian-looking spike trains with 1--2 spikes per second. The

information about the stimulus is contained only in the relative

timings of spikes, which are seen as vertical stripes in Figure 2

and which are effective to trigger STDP. A mean firing rate

description of the same network would result in neuronal ac-

tivities having constant values, corresponding to constant firing

rates, with no possibility to know when stimulation occurs.

Conversely, DA-modulated STDP would fail to reinforce firing

rate patterns. Indeed, large firing rate fluctuations produce

multiple coincident spikes with random pre--post order, so

STDP dominated by LTD would result in the average depression

of synaptic strength (Kempter et al. 1999a, 1999b; Song et al.

2000). Thus, even when coincidences are not rare, STDP can

still decouple chance coincidences due to rate-based dynamics

from causal pre--post relations due to spike-timing dynamics

(this point was stressed to the author by Wulfram Gerstner).

This is how DA-modulated STDP differs from rate-based learning

rules, and this is why it is so effective to selectively reinforce

precise firing patterns but insensitive to firing rate patterns.

Reward versus Punishments

One can use our approach to model not only reward but also

punishments. Indeed, we can treat the variable d as concentra-

tion of extracellular DA above a certain baseline level. In this

case, negative values of d, interpreted as concentrations below

the baseline, result in active unlearning of firing patterns, that is,

in punishments. Another way to implement punishment is to

assume that DA controls only the LTP part of STDP. In this case,

the absence of a DA signal results in overall depression of

synaptic connections (punishment), certain intermediate values

of DA result in an equilibrium between LTD and LTP parts of

STDP (baseline), and strong DA signals result in potentiation of

eligible synaptic connections (reward). There is anecdotal

evidence that the STDP curve has a very small LTP part in the

prefrontal and motor cortices (Desai NS, personal communica-

tion). The model makes a testable prediction that the STDP

curve will look quite different if DA is present during or

immediately after the induction of synaptic plasticity.

Conclusion

DA modulation of STDP provides an elegant solution to the

distal reward/credit assignment problem: only nearly coinci-

dent spiking patterns are reinforced by reward, whereas un-

correlated spikes during the delay period to the reward do not

affect the eligibility traces (variables c) and hence are ignored by

the network. In contrast to previous theoretical studies, 1) the

network does not have to be quiet during the waiting period to

the reward and 2) reward-triggering patterns do not have to be

retained by recurrent activity of neurons. If a spiking pattern

out of a potentially unlimited repertoire of all possible patterns,

consistently, precedes or triggers reward (even seconds later),

the synapses responsible for the generation of the pattern are

eligible for modification when the reward arrives and the

pattern is consistently reinforced (credited). Even though the

network does not know what pattern was credited, it is more

likely to generate the same pattern in the same behavioral

context in the future.
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